Die Verteilung der Anzahl k der Erfolge in einer Bernoulli-Kette der Länge n und der Erfolgswahrscheinlichkeit p wird Binomialverteilung mit den Parametern n und p genannt. Es gilt: P ( X = k ) = ( n k ) ⋅ p k ⋅ ( 1 − p ) n − k ( k = 0 ; 1 ...
Eine n-fach und unabhängig voneinander ausgeführte Realisierung eines BERNOULLI-Experiments mit der Erfolgswahrscheinlichkeit p heißt BERNOULLI-Kette der Länge n und mit der Erfolgswahrscheinlichkeit p oder kurz BERNOULLI-Kette mit den Parametern n und p.Dazu betrachten wir im Folgenden ein...
Wird ein BERNOULLI-Experiment n-mal durchgeführt, ohne dass sich die Erfolgswahrscheinlichkeit p ändert, so ist die zufällige Anzahl der Erfolge eine Zufallsgröße X, die die n + 1 Werte 0 ; 1 ; 2 ; ...
Wird ein Bernoulli-Versuch insgesamt n-mal unabhängig voneinander (hintereinander) durchgeführt, so spricht man von einer Bernoulli-Kette der Länge n. Mithilfe der bernoullischen Formel kann eine Aussage über die Wahrscheinlichkeit des Auftretens von k Erfolgen gemacht werden.