Die Bezeichnung Trigonometrie kommt aus dem Griechischen und setzt sich aus den griechischen Wörtern für „drei“, „Winkel“ und „messen“ zusammen.Die Anfänge trigonometrischer Kenntnisse sind nicht bekannt.
Für die Summen bzw. Differenzen trigonometrischer Funktionen können Produktdarstellungen angegeben werden, die für das praktische Rechnen mitunter bequemer zu handhaben sind.
Jedem spitzen Winkel in einem rechtwinkligen Dreieck sind umkehrbar eindeutig Seitenverhältnisse zugeordnet, die man als Sinus, Kosinus, Tangens bzw. Kotangens des betreffenden Winkels bezeichnet.
Bei allen zueinander ähnlichen rechtwinkligen Dreiecken sind die Quotienten aus den Längen von je zwei einander entsprechenden Seiten gleich.Für die nebenstehend bzw.
HIPPARCHOS VON NIKAIA (etwa 190 bis 125 v. Chr.), einer der bedeutendsten Astronomen der Antike, gilt als Begründer der sphärischen Trigonometrie. Seine Bücher sind nicht erhalten geblieben, er besaß aber wahrscheinlich Sehnentafeln.
Der Sinussatz verbindet gegenüberliegende Größen (Seiten und Winkel) im allgemeinen Dreieck. Sind zwei einander gegenüberliegende Größen gegeben, so kann zu einer dritten die gegenüberliegende Größe berechnet werden.
Als Additionstheoreme für Winkelfunktionen werden Formeln bezeichnet, durch die die Funktionswerte von Summen und Differenzen von Winkeln auf die Werte der trigonometrischen Funktionen einzelner Winkel zurückgeführt werden.
Für die Summen bzw. Differenzen trigonometrischer Funktionen können Produktdarstellungen angegeben werden, die für das praktische Rechnen mitunter bequemer zu handhaben sind.
Als Additionstheoreme für Winkelfunktionen werden Formeln bezeichnet, durch die die Funktionswerte von Summen und Differenzen von Winkeln auf die Werte der trigonometrischen Funktionen einzelner Winkel zurückgeführt werden.