Teilbarkeit durch 11
Eine Zahl ist durch 11 teilbar, wenn ihre Querdifferenz (die Differenz aus der Summe der an ungeraden Stellen stehenden Ziffern und der Summe der an geraden Stellen stehenden Ziffern) durch 11 teilbar ist.
(Sind beide Summen verschieden, subtrahiert man die kleinere von der größeren.)
Die Querdifferenz wird oftmals auch als alternierende Quersumme bezeichnet.
Beispiel:
2563 ist durch 11 teilbar.
Die Summe der an 1. und 3. Stelle stehenden Ziffern ist 3 + 5 = 8,
die Summe der an 2. und 4. Stelle stehenden Ziffern ist 6 + 2 = 8.
Also ist die Querdifferenz 8 – 8 = 0 und es gilt (11 teilt 0).
Beispiel:
192709 ist durch 11 teilbar.
Die Summe der an ungeraden Stellen stehenden Ziffern ist
9 + 7 + 9 = 25,
die Summe der geraden Stellen stehenden Ziffern ist
0 + 2 + 1 = 3,
also ist die Querdifferenz 25 – 3 = 22 und (11 teilt 22).
Teilbarkeit durch 7
Eine Zahl ist durch 7 teilbar, wenn die Zahl, die aus ihr nach folgendem Verfahren ermittelt wird, durch 7 teilbar ist:
Man multipliziere die am weitesten links stehende Ziffer mit 3 und addiere die nächste Ziffer. Man multipliziere das Ergebnis mit 3 und addiere die nächste Ziffer. Dies setze man so lange wie möglich fort. (Ist die entstehende Zahl zu groß, um die Teilbarkeit durch 7 entscheiden zu können, wendet man auf diese das obige Verfahren erneut an.)
Beispiel:
Zu untersuchen sei die Zahl 54971.
Man rechnet: