Heron-Verfahren

HERON VON ALEXANDRIA, er lebte etwa Ende des 1. Jh. in Alexandria, entdeckte ein Verfahren zur Berechnung einer Quadratwurzel, indem er dieses Problem geometrisch interpretierte.
Die Berechnung von A entspricht der Aufgabe, die Seitenlänge x eines Quadrates bei bekanntem Flächeninhalt A zu ermitteln.
HERON betrachtete eine Folge von Rechtecken, die alle den Flächeninhalt A haben und deren Seitenlängen sich immer mehr annähern, indem er jeweils das arithmetische Mittel der vorhergehenden Seitenlängen berechnete. Dadurch konnte er x durch schrittweise Annäherung beliebig genau bestimmen.

Bild

Mit diesem Verfahren erhält man eine schrittweise Annäherung an die gesuchte Zahl.
Das Verfahren wird abgebrochen, wenn die gewünschte Genauigkeit erreicht ist.
Allgemein lässt sich das Verfahren durch die Gleichung x n + 1 = 1 2 ( x n + A x n ) darstellen.
Sie gibt an, wie der nächste Näherungswert aus dem vorherigen Wert entsteht. Eine solche Vorschrift heißt Iterationsvorschrift, das dazugehörige Verfahren Iterationsverfahren.

Die Idee der schrittweise Annäherung lässt sich auch auf quadratische Gleichungen der Form
x 2 + p x + q = 0 übertragen. Dazu können folgende Iterationsvorschriften verwendet werden:
x n + 1 = q x n p und x n + 1 = q x n p
Für Iterationsverfahren ist der Einsatz eines Taschenrechners nach Aufstellen entsprechender Rechenablaufpläne sehr sinnvoll. Noch effektiver ist die Verwendung eines Computeralgebrasystems.

Für Iterationsverfahren ist der Einsatz eines Taschenrechners sehr sinnvoll.

Stand: 2010
Dieser Text befindet sich in redaktioneller Bearbeitung.

Lexikon Share
Lernprobleme in Mathe?
 

Mit deinem persönlichen Nachhilfe-Tutor Kim & Duden Learnattack checkst du alles. Jetzt 30 Tage risikofrei testen.

  • KI-Tutor Kim hilft bei allen schulischen Problemen
  • Individuelle, kindgerechte Förderung in Dialogform
  • Lernplattform für 9 Fächer ab der 4. Klasse
  • Über 40.000 Erklärvideos, Übungen & Klassenarbeiten
  • Rund um die Uhr für dich da

Einloggen