GERONIMO (oder GIROLAMO) CARDANO war eine der schillerndsten Figuren in der Geschichte der Mathematik. Hochbegabt, ehrgeizig und scharfsinnig brachte er Großes zustande, andererseits war er abergläubisch und charakterschwach, führte ein unruhiges Leben voller Höhen und Tiefen. Wir wissen darüber recht gut Bescheid, vor allem dank seiner Autobiografie, die er kurz vor seinem Tode noch aktualisierte und in der er sich selbst ohne Beschönigung beschreibt (Ich strebe Wundern nach und bin heimtückisch).
CARDANO wurde am 24. September 1501 als uneheliches Kind in Pavia geboren. Durch seinen Vater, einen Mailänder Juristen, wurde es ihm ermöglicht, von 1520 an Medizin und Mathematik an der Universität von Pavia zu studieren. Nachdem er 1526 zum Doktor der Medizin promoviert hatte, ließ er sich in Mailand als Arzt nieder, fand jedoch wegen seiner (unehelichen) Herkunft keine Aufnahme in das Ärztekollegium. Später praktizierte er auch in Pavia und Padua. In diesen Jahren setzte er seine Beschäftigung mit mathematischen Problemen fort und hielt darüber sogar Vorlesungen. Von 1545 an veröffentlichte er verschiedene mathematische Werke, führte aber zwischenzeitlich ein unstetes Wanderleben, das ihn nach Schottland, Frankreich und Deutschland brachte, und beschäftigte sich intensiv mit Astrologie, erstellte Horoskope u. a. für Christus, was ihm den Zorn der katholischen Kirche sicherte. Später trat CARDANO als Dozent und Professor der Medizin in Mailand, Pavia und Bologna auf. Er musste erleben, dass sein Sohn wegen Mordes hingerichtet wurde, kam 1570 in Bologna wegen seiner Schulden selber ins Gefängnis und ging danach nach Rom, wo er am 21. September 1576 verstarb. Es wurde überliefert, er habe sich zu Tode gehungert, weil er in einem Horoskop seinen Tod für dieses Jahr vorausgesagt hätte und sich nicht Lügen strafen wollte.
CARDANOs Hauptwerk, aus mehreren Büchern bestehend, trägt den Titel „Ars magna sive de regulis algebraicis“ (Die große Kunst oder das Buch von den algebraischen Regeln). Es erschien 1545 in Nürnberg und war die bis dahin umfassendste systematische Darstellung über Algebra. Neben vielem Überlieferten fanden sich darin zahlreiche neue Elemente und vor allem die berühmte Formel zur Lösung kubischer Gleichungen. Mit dieser Problematik hatten sich die besten italienischen Mathematiker befasst, und es war gelungen, Gleichungen der Form (mit positiven p und q) zu lösen. (Man schrieb Gleichungen damals nur mit positiven Gliedern und musste so zahlreiche einzelne Typen unterscheiden.) Angesichts eines bevorstehenden Rechenwettstreits, bei dem er fürchtete, mit solchen Aufgaben konfrontiert zu werden, hatte der venezianische Rechenmeister NICCOLÒ TARTAGLIA nach wochenlangem Suchen einen Weg zur Lösung der Gleichung (mit p, q positiv) gefunden.
Außerdem gelang es, kubische Gleichungen der Form
durch geschickte Substitution auf eine Hilfsgleichung zurückzuführen, in der das quadratische Glied beseitigt war. (Lediglich bei einer bestimmten Konstellation von Koeffizienten war das nicht möglich. Man nannte diesen „nicht-rückführbaren“ Fall den casus irreducibilis.) Damit war der Weg frei zur Lösung kubischer Gleichungen und zur Gewinnung einer Lösungsformel.
TARTAGLIA hielt sein Verfahren zunächst geheim. Er ließ es sich jedoch von CARDANO entlocken, nachdem dieser einen Eid geschworen hatte, es nicht zu veröffentlichen. Gegen dieses Versprechen nahm CARDANO jedoch die Formel in seine „Ars magna“ auf. Obwohl er dort die Urheberschaft TARTAGLIAs durchaus würdigte, kam es zum Streit zwischen beiden, der zuweilen in Handgreiflichkeiten ausartete, und am Ende war es doch CARDANO, dessen Namen diese Formel heute trägt.
Andererseits sind CARDANOs Verdienste um die Entwicklung der Algebra unbestritten. In einer Zeit, in der man bei Gleichungen negative Glieder vermied, rechnete er unbekümmert mit komplexen Zahlen. So akzeptierte er zum Beispiel als Lösungen der quadratischen Gleichung ohne Scheu die „Wurzeln“ und und rechnete . Er erkannte, dass kubische Gleichungen bis zu drei Lösungen haben und entdeckte auch Zusammenhänge zwischen den Koeffizienten und den Wurzeln, wie z. B. (wobei a der Koeffizient von ist) und (wobei c das absolute Glied ist). Damit gehen die „Wurzelsätze“ wenigstens teilweise auf ihn zurück, die heute den Namen VIETAs tragen.
CARDANO gibt auch Verfahren zur Lösung biquadratischer Gleichungen an, die von seinem Schüler LUDOVICO FERRARI entwickelt wurden und bei denen man durch eine Reduzierung zunächst auf kubische Gleichungen zurückgeht. Für Gleichungen höheren als vierten Grades enthält die „Ars magna“ Näherungsverfahren, die als regula aurea (Goldene Regel) bezeichnet werden.
In einem anderen Buch mit dem Titel „Liber de ludo aleae“ (Buch über das Würfelspiel), suchte CARDANO, der selbst ein leidenschaftlicher Würfelspieler war, seine empirisch gewonnenen Einsichten logisch zu untermauern. So untersuchte er beispielsweise die Frage, ob bei einem viermaligen Würfeln häufiger eine 6 auftritt als keine 6. Damit schuf er erste Ansätze für die Kombinatorik. In weiteren Abhandlungen ging er auch auf geometrische Probleme sowie auf Folgen und Reihen ein. Seine Beschäftigung mit physikalischen Problemen führte zu einigen Erfindungen, die seinen Namen tragen wie die kardanische Aufhängung (z. B. für Kompasse) bzw. die Kardanwelle und das Kardangelenk.
Kardanische Aufhängung beim Kompass
Stand: 2010
Dieser Text befindet sich in redaktioneller Bearbeitung.
Ein Angebot von