Euklidischer Algorithmus

Der sogenannte euklidische Algorithmus ist ein Verfahren zum Ermitteln des größten gemeinsamen Teilers (ggT) zweier Zahlen.

Da das kleinste gemeinsame Vielfache (kgV) zweier Zahlen der Quotient aus ihrem Produkt und ihrem ggT ist, lässt sich mit ihm auch das kgV ermitteln.
Beim euklidischer Algorithmus wird wie folgt verfahren:

Man teilt die größere durch die kleinere Zahl.
Geht die Division auf, ist der Divisor der ggT.
Geht die Division nicht auf, bleibt ein Rest. Dieser Rest ist der neue Divisor. Der alte Divisor wird zum Dividenden. Nun setzt man das Verfahren fort.
Nach endlich vielen Schritten erhält man den ggT.
In manchen Fällen ist dies die Zahl 1, dann sind die Ausgangszahlen teilerfremd.

Es ist der ggT von 544 und 391 gesucht.

544:391 = 1; Rest 153
391:153 = 2; Rest 85
153:85 = 1; Rest 68
85:68 = 1; Rest 17
68:17 = 4; Rest 0

Die Divison geht auf, der ggT von 544 und 391 ist 17.
Daraus folgt: Das kgV von 544 und 391 ist
( 544 391 ) : 17 = 12 512.

Es ist der ggT von 13 und 7 gesucht.

13:7 = 1; Rest 6
7:6 = 1; Rest 1
6:1 = 6; Rest 0

Die Division geht auf, der ggT von 13 und 7 ist 1, d. h., 13 und 7 sind teilerfremd.
Daraus folgt: Das kgV von 13 und 7 ist das Produkt
7 13 = 91.

Lexikon Share
Lernprobleme in Mathe?
 

Mit deinem persönlichen Nachhilfe-Tutor Kim & Duden Learnattack checkst du alles. Jetzt 30 Tage risikofrei testen.

  • KI-Tutor Kim hilft bei allen schulischen Problemen
  • Individuelle, kindgerechte Förderung in Dialogform
  • Lernplattform für 9 Fächer ab der 4. Klasse
  • Über 40.000 Erklärvideos, Übungen & Klassenarbeiten
  • Rund um die Uhr für dich da

Einloggen