Apollonioskreis

Der griechische Geometer APOLLONIOS VON PERGE (um 262 bis etwa 190 v. Chr.) beschäftigte sich intensiv mit Fragen der Form geometrischer Figuren.
Als speziellen geometrischen Ort untersuchte APOLLONIOS die Menge aller der Punkte P, die von einem gegebenen Punkt A doppelt so weit entfernt sind wie von einem anderen gegebenen Punkt B, d. h., für die gilt:
A P ¯ = 2 B P ¯
Er stellte fest, dass diese Punkte auf einem Kreis (dem sogenannten Apollonios-Kreis) liegen.
In der folgenden Abbildung ist der Sachverhalt in einem kartesischen Koordinatensystem dargestellt, wobei als feste Punkte die Punkte A(0; 0) und B(6; 0) gewählt worden. Für den Mittelpunkt M und den Radius r des Apollonios-Kreises k gilt in diesem Fall:
M ( 8 ; 0 ) b z w . r = 4

Bild

Apollonios-Kreis im kartesischen Koordinatensystem

Die Punkte A, B, M und der Kreispunkt C sind sogenannte harmonische Punkte, d. h. Punkte der harmonischen Teilung der Strecke A M ¯ (B ist der innere harmonische Teilpunkt, C der äußere harmonische Teilpunkt der Strecke), d. h., es gilt:
M B ¯ : B A ¯ = M C ¯ : C A ¯ ( 2 : 6 = 4 : 12 )

Apollonios-Kreis

Apollonios-Kreis

Stand: 2010
Dieser Text befindet sich in redaktioneller Bearbeitung.

Lexikon Share
Lernprobleme in Mathe?
 

Mit deinem persönlichen Nachhilfe-Tutor Kim & Duden Learnattack checkst du alles. Jetzt 30 Tage risikofrei testen.

  • KI-Tutor Kim hilft bei allen schulischen Problemen
  • Individuelle, kindgerechte Förderung in Dialogform
  • Lernplattform für 9 Fächer ab der 4. Klasse
  • Über 40.000 Erklärvideos, Übungen & Klassenarbeiten
  • Rund um die Uhr für dich da

Einloggen