Terminologie der Differenzialgleichungen

Die Lösung einer Differenzialgleichung heißt Integral der Differenzialgleichung. Integrieren einer Differenzialgleichung heißt, alle Funktionen zu finden, die für alle Werte der Variablen der Differenzialgleichung genügen. Das übliche Integrieren im Sinne der Integralrechnung wird Quadratur genannt.

Die höchste in einer Differenzialgleichung vorkommende Ableitung bestimmt die Ordnung der Differenzialgleichung. Durch F ( x , y , y , y ,..., y ( n ) ) = 0 ist also eine gewöhnliche Differenzialgleichung n-ter Ordnung charakterisiert.
Treten Potenzen der Ableitungen und/oder der Funktion auf, so bezeichnet die höchste Potenz den Grad der Differenzialgleichung.

Beispiel

Die Gleichung ( y ) 3 + a y + y = 0 ist eine gewöhnliche Differenzialgleichung 2. Ordnung vom 3. Grade.

Gewöhnliche Differenzialgleichungen heißen linear, wenn die Ableitungen und die Funktion nicht als Argument von Funktionen auftreten. Eine solche lineare Differenzialgleichung heißt lineare homogene Differenzialgleichung, wenn sie keinen von y und y freien Summanden enthält.

Die Gleichung ( a x + b ) y + ( c x + d ) y = 0 ist also eine lineare homogene Differenzialgleichung; bei Ersetzung von 0 durch eine Konstante oder einen Ausdruck der Veränderlichen x läge eine lineare inhomogene Differenzialgleichung vor.

Die Gleichung y ( n ) = f ( x , y , y ,..., y ( n 1 ) ) ist die explizite Form einer gewöhnlichen Differenzialgleichung n-ter Ordnung. Ist eine solche Darstellung nicht möglich, ist also F ( x , y , y ,..., y ( n ) ) = 0, so heißt die Darstellung implizit.

Um aus den Kurvenscharen, die die Integrale liefern – Existenz vorausgesetzt – eine spezielle Kurve auszuwählen (eine partikuläre Lösung), kann für gewöhnliche Differenzialgleichungen 1. Ordnung ein Anfangwert – gegeben durch die Koordinaten eines Punktes der Lösungskurve – vorgeschrieben werden, für Differenzialgleichungen 2.Ordnung ein Anfangswert und die Tangentenrichtung in diesem Punkt, für eine Differenzialgleichung 3. Ordnung zusätzlich zu Anfangspunkt und Tangentenrichtung in diesem Punkt die Krümmung der Integralkurve in dem Punkt usw. Das Bestimmen einer solchen partikulären Lösung heißt Lösen eines Anfangswertproblems.

Stand: 2010
Dieser Text befindet sich in redaktioneller Bearbeitung.

Lexikon Share
Lernprobleme in Mathe?
 

Mit deinem persönlichen Nachhilfe-Tutor Kim & Duden Learnattack checkst du alles. Jetzt 30 Tage risikofrei testen.

  • KI-Tutor Kim hilft bei allen schulischen Problemen
  • Individuelle, kindgerechte Förderung in Dialogform
  • Lernplattform für 9 Fächer ab der 4. Klasse
  • Über 40.000 Erklärvideos, Übungen & Klassenarbeiten
  • Rund um die Uhr für dich da

Einloggen