- Lexikon
- Mathematik Abitur
- 13 Wahrscheinlichkeitstheorie
- 13.4 Zufallsgrößen
- 13.4.3 Streuung
- Pafnuti Lwowitsch Tschebyschew
PAFNUTI LWOWITSCH TSCHEBYSCHEW (auch TSCHEBYSCHEFF, TSCHEBYSCHEV bzw. CHEBYSHEV) entstammte einer adligen Familie, er wurde am 4. Mai 1821 in dem Dorf Okatovo im Gouvernement Kaluga geboren. Den ersten Unterricht erteilten ihm seine Mutter (in Lesen und Schreiben) sowie seine Cousine (in Arithmetik und Französisch). Um ihren Kindern eine solide Schulbildung zu vermitteln und sie auf einen Universitätsbesuch vorzubereiten, übersiedelte die Familie im Jahre 1832 nach Moskau.
Mit 16 Jahren begann PAFNUTI LWOWITSCH TSCHEBYSCHEW ein Studium an der mathematisch-naturwissenschaftlichen Fakultät der Moskauer Universität, das er 1841 mit einer wissenschaftlichen Arbeit über die numerische Auflösung algebraischer Gleichungen höheren Grades abschloss.
Im Jahre 1846 verteidigte er seine Magisterdissertation auf dem Gebiet der Wahrscheinlichkeitstheorie an der Universität St. Petersburg. Ein Jahr später erwarb er mit einer Arbeit über die Integration mithilfe von Logarithmen die Erlaubnis, an einer Hochschule zu lehren, und erhielt in Petersburg eine Dozentur für Algebra und Zahlentheorie. Im Ergebnis der Habilitation mit einer Arbeit über die Theorie der Kongruenzen wurde er 1850 zum Professor berufen.
Bereits in jener Zeit veröffentlichte TSCHEBYSCHEW Arbeiten, die ihn zu einem bekannten Mathematiker Europas machten. 1856 wurde er zunächst außerordentliches, drei Jahre später dann ordentliches Mitglied der Petersburger Akademie der Wissenschaften, an der er sich nach Beendigung seiner Universitätslaufbahn ab 1882 bis zu seinem Tode ausschließlich seinen wissenschaftlichen Forschungen widmen konnte.
PAFNUTI LWOWITSCH TSCHEBYSCHEW, der (unverheiratet) sein gesamtes Leben der Wissenschaft gewidmet hatte, verstarb am 26. November 1894 in St. Petersburg.
Die wissenschaftliche Tätigkeit TSCHEBYSCHEWS war äußerst vielseitig (sodass es nicht abwegig erscheint, ihn gewissermaßen als Nachfolger EULERS zu bezeichnen).
Schwerpunktmäßig umfasste sie zahlentheoretische Untersuchungen (u.a. zu Primzahlen), die Wahrscheinlichkeitsrechnung, das Arbeiten mit Näherungspolynomen sowie die Integrationstheorie.
Besonders groß war der Einfluss TSCHEBYSCHEWS auf die Entwicklung der Wahrscheinlichkeitstheorie, insbesondere als Begründung statistischer Forschungsmethoden. Zu nennen wären hier etwa Untersuchungen zur Verallgemeinerung des Gesetzes der großen Zahlen sowie seiner Anwendbarkeit, die später u.a von KOLMOGOROW aufgegriffen wurden. Intensiv setzte er sich auch mit den Begriffen Zufallsgröße und deren Erwartungswert auseinander. Die nach ihm benannte tschebyschewsche Ungleichung ermöglicht eine Abschätzung der Wahrscheinlichkeit, mit der eine Zufallsgröße einen Wert annimmt, der um mehr als eine fest vorgegebene Zahl vom Erwartungswert abweicht.
Ein Charakteristikum der wissenschaftlichen Arbeit TSCHEBYSCHEWS war, dass er mathematische Theorien stets in Wechselwirkung mit praktischen Anwendungen betrachtete. So beschäftigte er sich beispielsweise mit der Anwendung der Mathematik in der Astronomie (als Grundlage für die kartographische Erschließung Russlands), auch entwickelte er ein Modell einer Rechenmaschine (für die Addition und Subtraktion von Zahlen).
Bereits zu seinen Lebzeiten fanden die wissenschaftlichen Leistungen TSCHEBYSCHEWS breite Anerkennung auch über Russlands Grenzen hinaus, u.a. war er Mitglied der Akademien von Berlin, Bologna und Paris sowie der London Royal Society.
Stand: 2010
Dieser Text befindet sich in redaktioneller Bearbeitung.
Ein Angebot von