Geometrische Folgen
Eine geometrische Zahlenfolge ist dadurch charakterisiert, dass die Folgenglieder jeweils durch Multiplikation mit dem konstanten Faktor q aus dem vorhergehenden Glied entstehen.
Jedes Folgenglied (außer dem ersten) ist das geometrische Mittel seiner beiden Nachbarglieder.
Zum Schachspiel, das bekanntlich auf einem Brett von Feldern gespielt wird, gibt es die folgende Anekdote:
ZETA, der Erfinder des Spieles, soll sich vom Kaiser SHERAM als Belohnung eine Menge Weizen ausbedungen haben – und zwar ein Korn auf das erste Feld des Schachspiels, zwei Körner auf das zweite Feld und auf jedes weitere Feld immer die doppelte Anzahl von Körnern des vorherigen.
Insgesamt ergibt sich so eine Menge von Körnern (das sind etwa Körner). Rechnet man nun 10 Körner zu einem Gramm, so ergibt das rund Weizen. (Die Welternte 1994 betrug etwa , man benötigte also mehr als das Zehntausendfache des 1994 geernteten Weizens, so viel ist auf der Welt insgesamt noch nicht geerntet worden.)
Das Beispiel zeigt eindrucksvoll, dass die Folge der Zahlen 1; 2; 4; 8; 16 ... sehr rasch wächst.
Eine geometrische Folge ist dadurch gekennzeichnet, dass der Quotient q zwischen zwei benachbarten Gliedern stets gleich ist, d. h., für alle Glieder der Folge gilt:
Beispiele:
Durch Angabe des Quotienten q und des Anfangsgliedes ist die gesamte Folge bestimmt, es gilt:
-
B. Mahler, Fotograf, Berlin
Beispiel:
Es ist das 12. Glied der Folge (1) zu berechnen.
Gegeben:
Gesucht:
Lösung:
Das interaktive Rechenbeispiel ermöglicht Berechnungen an geometrischen Zahlenfolgen. Eine geometrische Folge ist genau dann (streng) monoton wachsend, wenn ist, sie ist genau dann (streng) monoton fallend, wenn ist. Für den Fall entsteht die konstante Folge
Für ergeben sich alternierende Folgen.
Bei einer geometrischen Zahlenfolge ist jedes Glied (mit Ausnahme des Anfangsgliedes ) das geometrische Mittel seiner beiden Nachbarglieder (woraus sich auch der Name geometrische Folge erklärt).
Beweis:
Auch für geometrische Folgen lassen sich Partialsummen berechnen. Für die n-te Partialsumme einer geometrischer Folgen gilt:
Beispiel:
Es ist die Summe der Folge (1) zu berechnen.
Gegeben:
Gesucht:
Lösung: